Suatu gedung yang berdiri tegak pasti memiliki sistim struktur tertentu, entah itu sistim rangka (Frame), Sistim corewall/shearwall, atau sistim ganda yang merupakan gabungan dari sistim rangka dan core/shear wall. Sistim-sistim tersebut tentunya dibuat dengan tujuan mampu memikul beban-beban yang akan diterima bangunan, baik itu beban mati, beban hidup atau beban lateral (angin dan gempa). Nah untuk menentukan apakah sistim tersebut aman-yang berarti gedung tersebut juga aman- diperlukan beberapa kriteria yang harus dipenuhi, yaitu Kekakuan, Kekuatan, dan kestabilan sistim. apa saja syarat-syaratnya?
- Syarat pertama adalah kekakuan.
Suatu struktur harus memiliki kekakuan yang cukup sehingga pergerakkannya dapat dibatasi. Kekakuan struktur dapat diukur dari besarnya simpangan antar lantai (drift) bangunan, semakin kecil simpangan struktur maka bangunan tersebut akan semakin kaku (Smith dan Coull, 1991). Ada perbedaan antara displacement dan drift, displacement adalah simpangan suatu lantai di ukur dari dasar lantai sedangkan drift adalah simpangan suatu lantai di ukur dari dasar lantai di bawahnya. Kekakuan bahan itu sendiri dipengaruhi oleh modulus elastisitas bahan dan ukuran elemen tersebut. Dan modulus elastisitas berbanding lurus dengan kekuatan bahan, maka semakin kuat bahan maka bahan tersebut juga semakin kaku. Namun bahan yang terlalu kaku bisa menjadi getas (patah seketika). Bagaimana cara menghitung drift? Saya rasa setiap universitas pasti mengajarkan hal ini dan banyak buku yang membahas hal ini seperti Alan Williams, ph.d.,S.E.,C.Eng. dalam bukunya yang berjudul Structural Analysis,in theory and practise memberi contoh bagaimana cara menghitung displacement suatu rangka kaku sederhana (rigid frames). SNI 1726 pasal 8.1.2 mensyaratkan simpangan antar tingkat yang terjadi tidak boleh melampaui 0,03/R kali tinggi tingkat yang bersangkutan namun atau 30 mm, bergantung mana yang lebih kecil, untuk memenuhi kinerja batas layan struktur gedung (Δs). SNI 1726 menetapkan ini untuk membatasi terjadinya pelelehan baja dan peretakan beton yang berlebihan, di samping untuk mencegah kerusakan non struktural dan ketidaknyamanan penghuni. Selain kinerja batas layan, SNI 1726 juga menetapkan kinerja batas ultimit (Δm) pada pasal 8.2.1, dimana simpangan antar tingkat tidak boleh melampuai 0,02 kali tinggi lantai yang bersangkutan dan Δm = (zeta) x R x Δs. Hal ini diperlukan untuk membatasi kemungkinan terjadinya keruntuhan struktur yang akan membawa korban jiwa manusia (Purwono et al, 77).
- Syarat yang kedua adalah kekuatan.
Syarat kekuatan ini mencakup seluruh elemen struktur, baik pelat, kolom, balok, dan shearwall. Cara mengeceknya pun sesuai dengan perilaku elemen-elemen tersebut. Misalnya kolom, cari terlebih dahulu diagram interaksi dan tentukan dimana titik Pu,Mu maksimum pada diagram interaksi tersebut, jika titik tersebut berada di luar dan di bawah keadaan balance, maka terjadi kegagalan tarik. Jika berada di luar sebelah atas keadaan balance maka terjadi kegagalan tekan. Sedangkan pada balok dan pelat, di cek dengan mengukur kemampuan balok dengan ukuran dan tulangan terpasang kemudian bandingkan dengan momen yang terjadi. Bila momen kapasitas balok di atas momen yang terjadi di lapangan, baik itu tekan maupun tarik, maka balok dan pelat tersebut aman. Sedangkan pada shearwall, ada beberapa pakar yang mengasumsikan shearwall sebagai kolom pendek karena itu pengecekannya pun sama dengan kolom, yaitu dengan mencari diagram interaksi tersebut.
Pemeriksaan Kekuatan Kolom
Pemeriksaan Kekuatan Balok
- Syarat yang ketiga adalah kestabilan.
Konsep pemeriksaan kestabilan ini dikemukakan oleh Mac Gregor dalam bukunya yang berjudul Reinforced Concrete, Mecjanics and Design pada tahun 1997. Dalam bukunya tersebut beliau mengemukakan konsep kestabilan struktur seperti sebuah bola yang berada pada suatu tempat dengan keadaan tertentu.
Pada gambar pertama di atas, keadaan a menunjukkan keadaan yang stabil, yang berarti bahwa walaupun bola dapat bergerak namun tetap dapat kembali pada keadaan semula. Sedangkan keadaan b menunjukkan keadaan yang kurang stabil karena ketika bola tersebut bergerak ,belum tentu bola tersebut akan kembali pada keadaan semula, sedangkan keadaan c menunjukkan keadaan yang tidak stabil, dimana bila sedikit saja bola terkena gaya dan bergerak maka bola tersebut akan langsung jatuh. Konsep ini dapat diterapkan pada kolom atau shearwall yang merupakan struktur utama penopang gedung. Kolom atau shearwall tersebut dapat mengalami tekuk atau buckling, keadaannya pun berbeda-beda, namun jika kolom atau shearwall tersebut dapat kembali pada keadaan semula maka kolom atau shearwall tersebut dapat dikatakan stabil. Lalu bagaimana suatu kolom atau shearwall dapat kembali pada keadaan semula setelah mengalami tekuk? Hal ini juga telah di jabarkan oleh MacGregor dalam buku yang sama, bahwa kolom beton bertulang mempunyai daya untuk menahan gaya (tekan) yang menyebabkan tekuk, berbeda dengan kekuatan, karena gaya yang menyebabkan tekuk bergantung pada panjang kolom bukan hanya ukuran kolom. Sehingga faktor yang mempengaruhi daya kestabilan itu adalah EI (modulus elastisitas dan momen inersia) dan h (panjang kolom), dan rumusnya adalah:
Jika Pu maksimum yang terjadi pada kolom kuran dari Pc kolom tersebut maka dapat dikatakan bahwa kolom tersebut stabil dan sebaliknya jika Pu maksimum melebihi Pc kolom tersebut maka kolom tersebut dapat dikatakan kurang stabil.
Tidak ada komentar:
Posting Komentar